cut-video

1. The cut-video script 2
2. Details in the cut-video script 3
3. Testing 5
3.1.Test 1 5
3.2.Test 2 6

7

4. References

HTML: https://paulojeronimo.com/posts/cut-video

A video trimming (and compression)
that you can use on your Termux

)-

Paulo Jeronimo in Brasilia on December 12, 2022: I created a Bash script for video trimming and
compression using FFmpeg and HandBrakeCLI. It can be helpful if you are like me: I use command
line tools to do everything in my daily work, including video transformations! ;)

Please, also note that I created this article post to use for recording my first video in English. I am a
Brazilian, developing in Bash since the early 2000s, but I never recorded any video (in English)
about this. So I decided to create a new Bash script, and a related article, to use as input for
recording this video.

https://paulojeronimo.com/posts/cut-video
https://odysee.com/@paulojeronimo/
https://goo.gl/maps/Wdgo8se79hfP1m7PA
https://ffmpeg.org/
https://handbrake.fr/docs/en/latest/cli/cli-options.html
https://www.gnu.org/software/bash/

1. The cut-video script

The cut-video script is a 55 lines Bash script that I wrote to do video cuttings and compression
using FFmpeg and HandBrakeCLI.

o 55 is a "magic" Fibonacci number and I love this kind of numbers! See another
project that I developed (in JavaScript/ React): https://finisher.tech/fibonacci-app.

I will explain the code below. In order to do this, I put some tags inside the code (using comments in
the format "# ref-string") and will explain all of them.

Here is the entire content of the script:

#!/usr/bin/env bash
Author: Paulo Jer6nimo (paulojeronimo.com)
Links:
- Article | https://paulojeronimo.com/posts/cut-video
- Video | https://youtube.com/@PauloJeronimo
set -eou pipefail # ref-set
cd "$(dirname "$0")" # ref-cd-to-the-script-location
script_name=$(basename "$0" .sh)
source ./.$script_name 2> /dev/null || { \
source ~/.§script_name 2> /dev/null || :; } # ref-source
clips_file=${clips_file:-clips.csv} # ref-clips_file
video_var=${video_var:-${PWD##*/}} # ref-video var
mkv_compression=${mkv_compression:-false}
mkv_tool=${mkv_tool:-HandBrakeCLI} #ref-mkv_tool
$mkv_compression && \
echo MKV compression will be made by $mkv_tool! || \
mkv_tool=
go_ahead=true # ref-go_ahead
for t in ffmpeg $mkv_tool
do
command -v $t > /dev/null || { # ref-command-isnt-in-path
echo Command \"$t\" not found ...
go_ahead=false
}
done
for f in "$clips_file" original-video
do
[-f"$"] || { # ref-file-not-found
echo File \"$f\" not found ...
go_ahead=false
}
done
$go_ahead || { # ref-abort
echo Aborting due to the problems reported above!
exit 1

}
log=$script_name.log; > $log # ref-log

https://www.gnu.org/software/bash/
https://ffmpeg.org/
https://handbrake.fr/docs/en/latest/cli/cli-options.html
https://finisher.tech/fibonacci-app

while IFS=, read -r ss to video # ref-read-csv
do
gen_file=$(sed "s,\$video,$video_var,g" <<< "$video") f#iref-gen_file
echo ffmpeg -nostdin -y -1 original-video \
-ss $ss -to $to -c:v copy \"$gen_file\" | tee last-cmd # ref-ffmpeg
sed 's/A/\$ /g' last-cmd >> $log; bash < last-cmd &> $log
I $mkv_compression || { # ref-mkv_compression
[-f ./$mkv_tool.$$ 1 || echo "#!/usr/bin/env bash" > $mkv_tool.$$
["$mkv_tool" = HandBrakeCLI] && \
cmd="$mkv_tool -i \"$gen_file\" -o \"${gen_file%.*}.mkv\"" || \
cmd="$mkv_tool \"$gen_file\""
echo -e "tee last-cmd <<< '$cmd'\nsed 's/A/\$ /g’ last-cmd >> \
$1log\nbash < last-cmd &> $1log" >> $mkv_tool.$$
}
done < "$clips_file"
I $mkv_compression || {
mv -f ./$mkv_tool.$$./$mkv_tool; chmod +x ./$mkv_tool; ./$mkv_tool; }
vim: tabstop=2 shiftwidth=2 colorcolumn=72

The more recent version of this script, maybe different and with more features, is also available in
my dotfiles GitHub repository, here: https://github.com/paulojeronimo/dotfiles/.scripts/cut-video.

2. Details in the cut-video script

v the first line

In most of all Unix scripts, the first line contains an interpreter directive called [shebang].

It "is like a comment" in the first line but, actually, it is a character sequence #! -+ used by the
program loader to interpret the rest of the script.

The loader executes the specified interpreter, passing it as an argument to the path initially used
when attempting to run the script.

See more details in the references section.

v the comment lines in the header

Sometimes I like to write the header of my scripts using another structured text. In this case, it is
written in YAML format. You can test this by typing the following command on your terminal
(assuming you have yq installed):

yq -0 json <(sed -n '2,5p"' cut-video | sed 's,M ,,g")
This will be the output:

{

"Author": "Paulo Jerdnimo (paulojeronimo.com)",

"Links": [
"Article | https://paulojeronimo.com/posts/cut-video",
"Video | https://youtube.com/@Pauloleronimo”

]

https://github.com/paulojeronimo/dotfiles/.scripts/cut-video
https://en.wikipedia.org/wiki/YAML
https://github.com/mikefarah/yq

v ref-set

TODO - Finish this topic.

v ref-cd-to-the-script-location

TODO - Finish this topic.

v ref-source

TODO - Finish this topic.

v ref-clips_file

The clips_file variable is file name, with a Comma Separated Virgula (CSV) content, that will be
used to determine the positions where the file original-file (a link to the file that will be
processed) will be cutted.

Here is a sample content for this file:

00:00:00,00:05:33, $video.
00:05:34,00:12:43,$video.
00:12:44,00:18:09, $video.
00:18:10,00:23:18,$video.
00:23:19,00:30:20, $video.

nothing-else-matters.mp4
master-of-pupets.mp4
fade-to-black.mp4
the-unforgiven.mp4
one.mp4

U AW N =
1

v ref-video_var

The video_var variable will be configured to get last part of the name of the current directory
(indicated by the $PWD), and will be used to compose the name of the generated file in the cutting
(made by FFmpeg) and also in the compression (made by HandBrakeCLI).

v ref-mkv_tool

TODO - Finish this topic.

v ref-go_ahead

The code below this comment will vefify if we have the conditions to run this script satisfied.

The first validation (ref-command-isnt-in-path) will verify if the required commands (FFmpeg
and HandBrakeCLI) are available in the PATH.

The second validation (ref-file-not-found) will check if the files (§clips_file and original-video)
are present on the current directory.

If one of these conditions aren’t satisfied, the go_ahead variable will be false. In the ref-abort
block, executed if $go_ahead is false, the script will print an aborting message and terminate its
execution with an error code 1.

v ref-log
TODO - Finish this topic.

https://ffmpeg.org/
https://handbrake.fr/docs/en/latest/cli/cli-options.html
https://ffmpeg.org/
https://handbrake.fr/docs/en/latest/cli/cli-options.html

v ref-read-csv

This while will loop through the contents of the CSV (§clips_file).

TODO - Finish this topic.

3. Testing

In order to do the next tests with cut-video, you can copy and paste the following commands
directly into your shell. I'll be using two environments in these tests: Termux and Linux.

3.1. Test 1

To follow the steps that I will show you, you will need the following tools installed:

1. yt-dlp
2. FFmpeg

I will demonstrate the commands below by doing this on my own mobile phone and using Termux.

To replicate the commands inside Termux, like me, first you will need to run the
following script on it:

bash <(curl -sSL TODO(url)/termux-setup.sh)

Let’s download a video containing some piano musics that I like (in low quality definition to speed
up our test) and create a link called original-file to it:

d=/tmp/mettalica-on-the-piano; rm -rf $d; mkdir $d && cd §_ && \
yt-dlp -f 160 'https://www.youtube.com/watch?v=he_o9LmXYwg' && \
1n -sf "$(echo *.mp4)" original-video

After that, we’ll download the cut-video script and make it executable:
s=cut-video; curl -sSL TODO(url)/$s -o $s; chmod +x $s
Before calling this script we need to create a file called clips.csv with the following command:

cat <<'EOF'>clips.csv

00:00:00,00:05:33,%video - 1.nothing-else-matters.mp4
00:05:34,00:12:43,8video - 2.master-of-pupets.mp4
00:12:44,00:18:09,$video - 3.fade-to-black.mp4
00:18:10,00:23:18,8video - 4.the-unforgiven.mp4
00:23:19,00:30:20,$video - 5.one.mp4

https://github.com/termux/termux-app
https://github.com/yt-dlp/yt-dlp
https://ffmpeg.org/
https://github.com/termux/termux-app
https://www.youtube.com/watch?v=he_o9LmXYwg

EOF
We can now call execute the cut-video script:
./cut-video

If everything goes weel, the tree of files created in this testing will be equals to the output shown in
command below:

$ tree

|-- Best Metallica songs on the piano [he_o9LmXYwg].mp4
|-- clips.csv

|-- cut-video

|-- cut-video.log

|-- last-cmd

|-- metallica-on-the-piano - 1.nothing-else-matters.mp4
|-- metallica-on-the-piano - 2.master-of-pupets.mp4

|-- metallica-on-the-piano - 3.fade-to-black.mp4

| -- metallica-on-the-piano - 4.the-unforgiven.mp4

|-- metallica-on-the-piano - 5.one.mp4

‘-- original-video -> Best Metallica songs on the piano [he_o9LmXYwg].mp4

0 directories, 11 files

3.2. Test 2

TODO - Finish this topic.
To follow this test we will need another environment and more some addional tools installed:

1. Docker
2. HandBrakeCLI

cat <<'EOF'>.cut-video
vim: syntax=bash

mkv_compression=true
echo .cut-video loaded!
EOF

https://docker.com
https://handbrake.fr/docs/en/latest/cli/cli-options.html

4. References

» shebang
a. https://en.wikipedia.org/wiki/Shebang_(Unix)#Examples
b. https://stackoverflow.com/questions/21612980/why-is-usr-bin-env-bash-superior-to-bin-bash

c. https://www.baeldung.com/linux/bash-shebang-lines

https://en.wikipedia.org/wiki/Shebang_(Unix)#Examples
https://stackoverflow.com/questions/21612980/why-is-usr-bin-env-bash-superior-to-bin-bash
https://www.baeldung.com/linux/bash-shebang-lines

	cut-video
	1. The cut-video script
	2. Details in the cut-video script
	3. Testing
	3.1. Test 1
	3.2. Test 2

	4. References

